In addition to today’s resource, please review *The Best Teaching Video of “Cricothyrotomy – Scalpel-Bougie-Tube technique” With Links To Additional Resources
Posted on July 16, 2024 by Tom Wade MD.
In addition to today’s resource, please review Canadian Airway Focus Group updated consensus-based recommendations for management of the difficult airway: part 1. Difficult airway management encountered in an unconscious patient. [PubMed Abstract] [Full-Text HTML[ [Full-Text PDF]. Can J Anaesth. 2021 Sep;68(9):1373-1404. doi: 10.1007/s12630-021-02007-0. Epub 2021 Jun 18.
Today, I review, link to, and excerpt from Canadian Airway Focus Group updated consensus-based recommendations for management of the difficult airway: part 2. Planning and implementing safe management of the patient with an anticipated difficult airway. [PubMed Abstract] [Full-Text HTML] [Full-Text PDF]. Can J Anaesth. 2021 Sep;68(9):1405-1436. doi: 10.1007/s12630-021-02008-z. Epub 2021 Jun 8.
All that follows is from the above resource.
Abstract
Purpose: Since the last Canadian Airway Focus Group (CAFG) guidelines were published in 2013, the published airway management literature has expanded substantially. The CAFG therefore re-convened to examine this literature and update practice recommendations. This second of two articles addresses airway evaluation, decision-making, and safe implementation of an airway management strategy when difficulty is anticipated.
Source: Canadian Airway Focus Group members, including anesthesia, emergency medicine, and critical care physicians were assigned topics to search. Searches were run in the Medline, EMBASE, Cochrane Central Register of Controlled Trials, and CINAHL databases. Results were presented to the group and discussed during video conferences every two weeks from April 2018 to July 2020. These CAFG recommendations are based on the best available published evidence. Where high-quality evidence is lacking, statements are based on group consensus.
Findings and key recommendations: Prior to airway management, a documented strategy should be formulated for every patient, based on airway evaluation. Bedside examination should seek predictors of difficulty with face-mask ventilation (FMV), tracheal intubation using video- or direct laryngoscopy (VL or DL), supraglottic airway use, as well as emergency front of neck airway access. Patient physiology and contextual issues should also be assessed. Predicted difficulty should prompt careful decision-making on how most safely to proceed with airway management. Awake tracheal intubation may provide an extra margin of safety when impossible VL or DL is predicted, when difficulty is predicted with more than one mode of airway management (e.g., tracheal intubation and FMV), or when predicted difficulty coincides with significant physiologic or contextual issues. If managing the patient after the induction of general anesthesia despite predicted difficulty, team briefing should include triggers for moving from one technique to the next, expert assistance should be sourced, and required equipment should be present. Unanticipated difficulty with airway management can always occur, so the airway manager should have a strategy for difficulty occurring in every patient, and the institution must make difficult airway equipment readily available. Tracheal extubation of the at-risk patient must also be carefully planned, including assessment of the patient’s tolerance for withdrawal of airway support and whether re-intubation might be difficult.
Keywords: airway management; anticipated; difficult; guidelines; intubation; tracheal.
© 2021. The Author(s).
Introduction
Significant morbidity related to airway management continues to be reported, with the failure to plan for difficulty a recurrent theme.1–3 Most published airway guidelines focus on management of the already-unconscious patient when difficulty with tracheal intubation is encountered. Although less frequently addressed, avoiding having to manage an unexpectedly difficult airway almost certainly has greater potential to prevent patient harm. Airway-related morbidity can be prevented by careful patient evaluation and formulation of an airway management strategy (a co-ordinated series of plans) before proceeding with airway management. Lack of an airway evaluation or the failure to change usual practice based on its findings has been associated with morbidity.1 Airway evaluation includes examination for anatomic predictors of difficulty with tracheal intubation, face-mask ventilation (FMV), supraglottic airway (SGA) use, and emergency front of neck airway access (eFONA). It should also include assessment of physiologic issues (e.g., apnea tolerance, aspiration risk, and altered hemodynamics) and the clinical context (e.g., case urgency, airway manager experience, equipment availability, and access to expert assistance). Airway evaluation should occur before starting airway management as well as before its discontinuation.
Video laryngoscopy (VL) has helped achieve more consistent glottic visualization and has improved first-attempt intubation success rates in the unconscious patient, especially in populations deemed to be at risk for difficult direct laryngoscopy (DL).4 Nevertheless, there remain patients who, based on thorough airway evaluation, would likely be more safely managed with awake tracheal intubation. This article addresses airway evaluation and provides recommendations to help formulate and implement a safe airway management strategy when difficulty is anticipated. In part 1 of these updated two-part recommendations,5 we address management of airway difficulties encountered in the unconscious patient, whether anticipated or not. Recommendations in both articles are meant to be broadly applicable to all specialties that have airway management in their practice mandate.
Definitions
The following definitions are used throughout the manuscript.
Anticipated difficult airway. A difficult airway is predicted when the airway manager anticipates difficulty with any or all of FMV, tracheal intubation, SGA use, or eFONA. Awake tracheal intubation. Awake tracheal intubation (ATI) refers to tracheal intubation of a patient who is sufficiently conscious to maintain a patent airway unassisted, to maintain adequate gas exchange by spontaneous ventilation, and to protect the airway against the aspiration of gastric contents or other foreign material. Awake tracheal intubation can occur via the nasal, oral, or front of neck routes, and is facilitated by topical, regional, or local infiltrative airway anesthesia. At-risk tracheal extubation. The at-risk tracheal extubation is defined by the patient anticipated to be intolerant of tracheal extubation or who might be potentially difficult to re-intubate. Difficult re-intubation might be anticipated based on pre-existing or de novo conditions (e.g., neck fusion or immobilization; upper airway edema).Prediction of difficulty with airway management
Predicting difficulty underlies the planning for safe airway management. Expert opinion appearing in audits of airway-related morbidity and closed legal claim studies suggest that the “failure to prepare for failure” by omitting, not documenting, or not acting on positive findings of an airway evaluation figures prominently in cases with poor outcomes.1–3 Canadian data,3 and that from the USA,2 reveal that most anesthesia airway-related closed claims involved patients presenting for elective surgery (78% and 63%, respectively).
Comprehensive airway evaluation includes physical examination of the patient and review of relevant physiologic and contextual issues, pertinent diagnostic imaging studies, and any available records of previous airway management. A history of previous difficulty is more often correctly predictive of difficulty than the bedside examination.11–15
Alone or in combination, the various bedside screening tests of anatomic features have been criticized for their poor performance in correctly predicting when difficulty will indeed occur with airway management.11,13,16 Nevertheless, the presence of certain anatomic features (Tables 1, ,2,2, ,3,3, ,4,4, ,5,5, ,6,6, ,7)7) should alert the airway manager to carefully consider the safest approach to airway management and which devices to have available; little downside will accrue if airway management turns out to be non-problematic. Conversely, when bedside screening suggests that no difficulty is expected, while more often correctly predictive of the actual outcome,11,16,17 unanticipated difficulty can still occur, such that the airway manager must be ready with a strategy to address difficulty in all patients. Performing and documenting an airway evaluation is standard of care, and furthermore, acts as a cognitive prompt18 to consider the potential for difficulty with every patient. The CAFG recommends that all patients undergo airway evaluation before the initiation of airway management and before the discontinuation of airway support (e.g., tracheal extubation).
Published predictors of difficult airway management
Predictors of difficult tracheal intubation by DL and VL and other devices appear in Tables 1–3. Predictors of difficult FMV and difficult SGA use appear in Tables 4 and and5,5, respectively. Predictors of difficult eFONA have not been prospectively studied but appear on a presumptive basis in Table 6. The likelihood of actually encountering difficulty with any modality increases in proportion to the number of anatomic predictors of difficulty.
There are currently few published studies looking at predictors of difficulty with tracheal intubation using VL; this is a gap in the literature that should be addressed. Physiologic and contextual factors that may also impact planning and implementation of airway management appear in Table 7.
The enhanced airway evaluation
Patients with obstructing airway pathology may have distortions of upper or lower airway anatomy that cannot be identified by regular bedside screening tests. For the patient with known or suspected obstructing glottic or supraglottic airway pathology, awake nasal endoscopy or oral VL performed under local anesthesia immediately before airway management can help clarify the extent and location of the problem.19 Subglottic pathology can be assessed by review of recent imaging studies.20 Point-of-care ultrasound is playing an increasing role in physiologic diagnosis and evaluation of targeted management of resuscitation before, during, or after airway management.21
Another aspect to enhancing the airway exam in patients with significantly altered anatomy is to identify the location of the cricothyroid membrane (CTM).22 If visual inspection or palpation fails to identify the CTM location with certainty, it should be identified using ultrasonography and marked,22,23 with the patient’s neck in an extended position. The patient can subsequently be positioned optimally for the intended airway technique; if eFONA is required, the patient can quickly be returned to the neck-extended position to utilize the previously made marking.24
Decision-making when difficult tracheal intubation is predicted
Few published studies or guidelines specifically address which patients with predictors of difficult tracheal intubation can safely be managed after the induction of general anesthesia. Nevertheless, cues can be taken from the UK’s NAP4 study1 and closed claims analyses.2,3 In NAP4, ATI was judged to have been underutilized in patients with known difficult airways. Eighteen cooperative patients with predictors of both difficult tracheal intubation and difficult FMV underwent intubation attempts after induction of general anesthesia. All suffered complications and two patients died.1
When difficulty is predicted, ATI enables patients to maintain their own airway patency, gas exchange, and protection of the lower airway against aspiration during tracheal intubation; thus, ATI potentially provides a safety benefit. Conversely, despite possessing predictors of difficult laryngoscopy or intubation, some patients might still be safely managed after induction of general anesthesia. When difficult laryngoscopy or intubation is predicted, deliberate consideration of the following four questions can help the airway manager decide whether ATI is indicated or if management might safely occur after induction (Fig. 1).